# Arvind Borde / PHY19, Week 10: The Wavefunction

| $\S$ <b>10.1 The wave function</b><br>Postulate:                                                                                                                                                                  | Interpretation:                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| We'll first consider a particle in 1d.                                                                                                                                                                            | We assume that $\Psi$ is single-valued and continuous.                                                                                                                                                                          |
| §10.1.1 <u>Normalization</u> :<br>Because of the link with probabilities, we require that<br>$\int_{-\infty}^{\infty}  \Psi ^2 dx = =$ This allows us to fix <i>C</i> in a wave function represented by $Cf(x)$ . | (1) Find $C$ in the wavefunction $\Psi(x) = Ce^{- x /x_0}$ ,<br>where $x_0$ is fixed.<br>$\int_{-\infty}^{\infty}  \Psi ^2 dx =$ So,<br>C =                                                                                     |
| (2) What's the probability that a particle given by the previous wavefunction will be found in $(-x_0, x)$ ?                                                                                                      | §10.1.2 Evolution<br>In general we'll have $\Psi(x,t)$ and our job will be to<br>determine the evolution of $\Psi$ from a given initial<br>state.<br>$\Psi$ evolves according to an equation proposed by<br>Erwin Schrödingier. |
| 5                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                               |

### Week 10, Slides 7–12

#### **Arvind Borde**



| §10.3.1 <u>A particle in a box</u>                   |    |
|------------------------------------------------------|----|
| This a particle confined to move in a fixed space,   |    |
| say $0 \leqslant x \leqslant L$ .                    |    |
| The time independent equation becomes:               |    |
|                                                      |    |
|                                                      |    |
| 10 14                                                |    |
| 13 14                                                |    |
| §10.3.2 <u>A finite square well</u>                  |    |
| This is particle in "potential well" of depth $U$ .  |    |
| Here the exterior wave function is obtained from     |    |
|                                                      |    |
|                                                      |    |
|                                                      |    |
|                                                      |    |
| 15                                                   |    |
| §10.3.3 The harmonic oscillator                      |    |
| The potential energy for a harmonic oscillator is    |    |
|                                                      |    |
|                                                      |    |
| where $m$ is the mass of the particle and $\omega$ = |    |
| $\sqrt{K/m}.$                                        |    |
|                                                      |    |
| 17                                                   | 18 |

### ADDITIONAL NOTES

\_\_\_\_\_

## §10.4 Expectation Values

Many quantities we might wish to measure, such as position, have probabilistic values in quantum mechanics. We define the expectation value of a quantity, f(x) as

| 19                                                                                                 | 20                                                               |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| We can use this to find the uncertainty in position for a harmonic oscillator:                     |                                                                  |
| 21 22                                                                                              |                                                                  |
| $\S10.5$ Observables and Operators                                                                 | For example, a constant $c$ is an operator, that sim-            |
| An observable is any particle property that can be measured.                                       | ply operates on $f(x)$ by $cf(x)$ .<br>Another operator is d/dx. |
| The position and momentum of a particle are ob-<br>servables, as are KE and PE.                    |                                                                  |
| In quantum mechanics, we associate an "opera-<br>tor" that acts on functions with each observable. | 24                                                               |
|                                                                                                    |                                                                  |

| The expectation value $\langle Q \rangle$ of an operator $[Q]$ is                                                                                                                                                                                                                                                        | For example, $\langle KE  angle$ is                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                         |
| 25                                                                                                                                                                                                                                                                                                                       | 26                                                                                                                                                                                                                                                                                                                                                                      |
| Here are some common operators:                                                                                                                                                                                                                                                                                          | §10.6 More on Schrödinger's Equation                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                          | In 1d, the S eq. for $\Psi(x,t)$ , the wave function for<br>a particle with potential energy, $U(x)$ , is<br>$-\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + U(x)\Psi = i\hbar\frac{\partial\Psi}{\partial t}$ The equation is dimensionally consistent: Every                                                                                                |
|                                                                                                                                                                                                                                                                                                                          | term has dimension [E][ $\Psi$ ].                                                                                                                                                                                                                                                                                                                                       |
| 27                                                                                                                                                                                                                                                                                                                       | 28                                                                                                                                                                                                                                                                                                                                                                      |
| Knowing $\Psi(x, 0)$ , the wavefunction at some initial<br>instant of time, $t = 0$ , the $S$ eq. allows us to figure<br>out its evolution. That is, it allows us to find<br>$\Psi(x, t)$ at any other time.<br>Note 1: $\Psi$ is complex, in general.<br>Note 2: If $\Psi_1$ and $\Psi_2$ are solutions of the $S$ eq., | $-\frac{\hbar^2}{2m}\frac{\partial^2(A_1\Psi_1 + A_2\Psi_2)}{\partial x^2} + U(x)(A_1\Psi_1 + A_2\Psi_2)$ $= -\frac{\hbar^2}{2m}\frac{\partial^2 A_1\Psi_1}{\partial x^2} + U(x)A_1\Psi_1$ $+ -\frac{\hbar^2}{2m}\frac{\partial^2 A_2\Psi_2}{\partial x^2} + U(x)A_2\Psi_2$ $= A_1i\hbar\frac{\partial\Psi_1}{\partial t} + A_2i\hbar\frac{\partial\Psi_2}{\partial t}$ |
| then so is $A_1\Psi_1 + A_2\Psi_2$ ( $A_i$ constant).                                                                                                                                                                                                                                                                    | $=i\hbar\frac{\partial}{\partial t}(A_1\Psi_1 + A_2\Psi_2)$                                                                                                                                                                                                                                                                                                             |
| 29                                                                                                                                                                                                                                                                                                                       | 30 In other words, the $S$ eq. is linear.                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                         |

ADDITIONAL NOTES

#### Week 10, Slides 31–36

## $\S10.7$ Interpretation

 $|\Psi(x)|^2 dx$  is interpreted as the probability that a particle will be found between x and x + dx.

Because of this we require that

$$\int_{-\infty}^{\infty} |\Psi|^2 dx \equiv \int_{-\infty}^{\infty} \Psi^* \Psi \, dx = 1.$$

This forces  $\Psi \to 0$  as  $|x| \to \infty$ .

$$\Psi^* \frac{\partial \Psi}{\partial t} = \frac{i\hbar}{2m} \Psi^* \frac{\partial^2 \Psi}{\partial x^2} - \frac{i}{\hbar} U(x) \, |\Psi|^2$$

Its complex conjugate is

$$\Psi \frac{\partial \Psi^*}{\partial t} = -\frac{i\hbar}{2m} \Psi \frac{\partial^2 \Psi^*}{\partial x^2} + \frac{i}{\hbar} U(x) |\Psi|^2$$

Adding the two,

 $\Psi^* \frac{\partial \Psi}{\partial t} + \Psi \frac{\partial \Psi^*}{\partial t} = \frac{i\hbar}{2m} \left( \Psi^* \frac{\partial^2 \Psi}{\partial x^2} - \Psi \frac{\partial^2 \Psi^*}{\partial x^2} \right)$ 

### §10.8 Separable Wavefunctions

For  $\Psi(x,t) = \psi(x)\phi(t)$ , the  $\mathcal{S}$  eq. becomes

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2}\phi(t) + U(x)\psi(x)\phi(t) = \phi(x)i\hbar\frac{d\phi}{dt}$$

Dividing by  $\psi(x)\phi(t)$ , we get

$$-\frac{1}{\psi(x)}\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + U(x) = \frac{1}{\phi(t)}i\hbar\frac{d\phi}{dt}$$

The S eq., it turns out, is not the probability police: It allows solutions that are un-normalizable.

But it *does* police evolution: If you *start* normal (ized), it ensures you stay so. In other "words":

$$\frac{d}{dt} \int_{-\infty}^{\infty} \Psi^* \Psi dx = \int_{-\infty}^{\infty} \left( \frac{\partial \Psi^*}{\partial t} \Psi + \Psi^* \frac{\partial \Psi}{\partial t} \right) dx = 0$$

To see this, multiply the  ${\cal S}$  eq. by  $\Psi^*/(i\hbar)$ :

The left-hand side is the quantity whose integral over x we wish to show is zero.

The right hand side may be rewritten as

$$\frac{i\hbar}{2m}\frac{\partial}{\partial x}\left(\Psi^*\frac{\partial\Psi}{\partial x}-\Psi\frac{\partial\Psi^*}{\partial x}\right)$$

Integrating this over x from  $-\infty$  to  $\infty$ , we get

 $\frac{i\hbar}{2m} \left[ \Psi^* \frac{\partial \Psi}{\partial x} - \Psi \frac{\partial \Psi^*}{\partial x} \right]_{-\infty}^{\infty} = 0$ 

The two will be equal  $\forall x$  and  $\forall t$  iff each side is a constant, E, with the dimensions of energy. So we get a time-dependent equation,

$$i\hbar\frac{d\phi}{dt} = E\phi(t)$$

and a time-independent one

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + U(x)\psi = E\psi(x)$$

#### ADDITIONAL NOTES

34

| (4) Solve the time-dependent equation.                                                          | We'll drop the $e^C$ term because it will be absorbed<br>by the eventual normalization of $\Psi(x,t)$ .                                        |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                 | So, $\phi(t) = e^{-i\omega t}$ gives the time dependence of all separable wavefunctions.                                                       |
|                                                                                                 | Unless otherwise stated, we'll assume that all the wavefunctions we consider are separable.                                                    |
| 37                                                                                              | 38                                                                                                                                             |
| $\S$ 10.9 A Free Particle (No Forces)                                                           | §10.9.2 Quantum mechanical behavior                                                                                                            |
| In the absence of forces, $U(x) = 0$ .                                                          | We ask what the $\mathcal{S}$ eq. says.                                                                                                        |
| §10.9.1 Classical behavior                                                                      | Keep the following in mind, remembering these:                                                                                                 |
| The particle will obey Newton's first law of motion:                                            | $\omega\equiv 2\pi f$ , $k\equiv 2\pi/\lambda$ , and $\hbar\equiv h/2\pi$ :                                                                    |
|                                                                                                 | $E = hf \qquad p = \frac{h}{\lambda} \\ = \hbar\omega \qquad = \hbar k$                                                                        |
| 39                                                                                              | Further $E = p^2/2m$ for a particle of mass $m$ .                                                                                              |
| The time-independent ${\mathcal S}$ eq. becomes:                                                | Another way: Observe that $(\psi'^2+k^2\psi^2)'$                                                                                               |
| $\frac{d^2\psi}{dx^2} = -k^2\psi(x), \qquad k^2 = \frac{2mE}{\hbar^2}$                          | $= 2\psi'\psi'' + 2k^2\psi'\psi = 2\psi'(\psi'' + k^2\psi) = 0$<br>So $\psi'^2 + k^2\psi^2 = C_1^2$ , or $\psi'^2 = k^2((C_1/k)^2 - \psi^2)$ . |
| The general solution is a linear combination of two independent solutions, found by inspection, | $\int \frac{\psi'}{\sqrt{(C_1/k)^2 - \psi^2}} dx = \int k  dx$                                                                                 |
| $\psi(x) = A\sin kx + B\cos kx$                                                                 | $\psi = (C_1/k)\sin(kx + C_2)$ $= \left[\frac{C_1}{k}\cos C_2\right]\sin kx + \left[\frac{C_1}{k}\sin C_2\right]\cos kx$                       |
| T L                                                                                             |                                                                                                                                                |

41

## ADDITIONAL NOTES

\_\_\_\_\_

But, we have a problem: the function

$$\psi(x) = A\sin kx + B\cos kx$$

is not \_\_\_\_\_.

We get around this by constructing a wave packet by superposing solutions of this type.

43

§10.10.2 Quantum mechanical behavior Inside the box, we have a free particle, so the timeindependent equation has the general solution

$$\psi(x) = A\sin kx + B\cos kx$$

Outside the box, the time-independent equation

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + U(x)\psi = E\psi(x)$$

45suggests that  $\psi \to 0$ , as  $U(x) \to \infty$ .

The wavefunctions,  $\psi_0$ ,  $\psi_1$ , and  $\psi_2$ , with the associated probability densities  $|\psi_n|^2$ :



47

#### §10.10 A Particle in a Box

This is a particle confined to move in a fixed space, say  $0 \leq x \leq L$ . We model this by

$$U(x) = \begin{cases} 0 & 0 \leqslant x \leqslant L \\ \infty & \text{elsewhere.} \end{cases}$$

§10.10.1 Classical behavior

The particle with either sit at rest in the box, or <sup>44</sup>will bounce at uniform speed between the walls.

So, we require that the interior wavefunction obey  $\psi = 0$  at the boundaries x = 0 and x = L:  $\psi(0) = 0 \Rightarrow A \sin 0 + B \cos 0 = 0 \Rightarrow B = 0$ .  $\psi(L) = 0 \Rightarrow A \sin kL = 0 \Rightarrow kL = n\pi$ , where n = 0, 1, 2, ...For each allowed value of n, we get a solution of

§10.10.3 <u>Energy levels</u> Since  $kL = n\pi$ , we get,

the S eq.,  $\psi_n(x) = A_n \sin(n\pi x/L)$ .

$$E = \frac{k^2 \hbar^2}{2m} = \frac{n^2 \pi^2 \hbar^2}{2mL^2}$$

In other words, we have quantized energy levels.

Week 10, Slides 49–54

| §10.11 A Particle in a Finite Square Well<br>This is a particle in a "potential well" of depth $U$ :<br>$U(x) = \begin{cases} 0 & 0 \le x \le L \\ U & \text{elsewhere.} \end{cases}$ | §10.11.1 <u>Classical behavior</u><br>This will depend on the total energy $E$ .<br>If $E \leq U$ , the particle will be confined to the well,<br>and will bounce between the walls.<br>If $E > U$ , the particle will escape the well.<br>To explore the CM-QM differences, we'll look at<br>$E \leq U$ . |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| §10.11.2 Quantum mechanical behavior                                                                                                                                                  | This exterior wave function is obtained from                                                                                                                                                                                                                                                               |
| In the well, we again have a free particle, so the time-independent equation has the same general solution                                                                            | $-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + U(x)\psi = E\psi(x)$ which reduces to                                                                                                                                                                                                                           |
| $\psi(x) = A \sin kx + B \cos kx$ We cannot assume here, though, that $\psi(0) = \psi(L) = 0$ . We need to first get the wavefunc-51tion outside the well.                            | $\frac{d^2\psi}{dx^2} = \frac{2m(U-E)}{\hbar^2}\psi(x) \equiv \alpha^2\psi(x)$ 52                                                                                                                                                                                                                          |
| There are two independent solutions, $e^{\alpha x}$ and $e^{-\alpha x}$                                                                                                               | The previous interior solution, must match these                                                                                                                                                                                                                                                           |
| of this equation.                                                                                                                                                                     | "smoothly" at the boundaries: we must have                                                                                                                                                                                                                                                                 |
| The general solution is                                                                                                                                                               | $A \sin 0 + B \cos 0 = B = Ce^0 = C$                                                                                                                                                                                                                                                                       |
| $\psi(x) = Ce^{\alpha x} + De^{-\alpha x}$                                                                                                                                            | $A \sin kL + B \cos kL = De^{-\alpha L}$                                                                                                                                                                                                                                                                   |
| Since we need $\psi(x) \to 0$ as $x \to \pm \infty$ , we get                                                                                                                          | No matter the details of this, there's a nonzero                                                                                                                                                                                                                                                           |
| $\psi(x) = \begin{cases} Ce^{+\alpha x} & x < 0\\ De^{-\alpha x} & x > L \end{cases}$                                                                                                 | probably that the particle will escape even with                                                                                                                                                                                                                                                           |
| 53                                                                                                                                                                                    | E < U.                                                                                                                                                                                                                                                                                                     |

§10.12 The Simple Harmonic Oscillator The wavefunctions,  $\psi_1$ ,  $\psi_2$ , and  $\psi_3$ , with the associated probability densities  $|\psi_n|^2$ : The potential energy is  $U = \frac{1}{2}Kx^2$  $|\psi_{3}|^{2}$ where  $K = m\omega^2$  and m is the mass of the particle.  $|\psi_2|^2$  $|\psi_1|^2$ ш п III п §10.12.2 Quantum mechanical behavior §10.12.1 Classical behavior The total energy is The time-ind. S eq. becomes  $E = \frac{1}{2}Kx^2 + \frac{1}{2}mv^2.$  $\frac{d^2\psi}{dx^2} = \frac{2m}{\hbar^2} \left(\frac{1}{2}m\omega^2 x^2 - E\right)\psi(x)$ At the extreme position (x = A), v = 0; we get Not so easy to solve, but try  $E = \frac{1}{2}KA^2$  $\psi(x) = C_0 e^{-m\omega x^2/2\hbar}$ The particle oscillates between A and -A. (5) What's  $\psi'(x)$ ? §10.12.3 Energy levels  $\psi'(x) =$  $E_n = \left(n + \frac{1}{2}\right)\hbar\omega$ (6) What's  $\psi''(x)$ ? The quantum oscillator can penetrate the classi- $\psi''(x) =$ cally forbidden region. The smallness of the energy level gaps is why we do not see them in day-to-day experience.

