
Arvind Borde / PHY19, Week 10: The Wavefunction (continued)

§10.1 Schrödinger’s Equation

In 1d, the S eq. for Ψ(x, t), the wave function for

a particle with potential energy, U(x), is

− h̄2

2m

∂2Ψ

∂x2
+ U(x)Ψ = ih̄

∂Ψ

∂t

The equation is dimensionally consistent: Every

term has dimension [E][Ψ].

1

Knowing Ψ(x, 0), the wavefunction at some initial

instant of time, t = 0, the S eq. allows us to figure

out its evolution. That is, it allows us to find

Ψ(x, t) at any other time.

Note 1: Ψ is complex, in general.

Note 2: If Ψ1 and Ψ2 are solutions of the S eq.,

then so is A1Ψ1 +A2Ψ2 (Ai constant).

2

− h̄2

2m

∂2(A1Ψ1 +A2Ψ2)

∂x2
+ U(x)(A1Ψ1 +A2Ψ2)

= − h̄2

2m

∂2A1Ψ1

∂x2
+ U(x)A1Ψ1

+− h̄2

2m

∂2A2Ψ2

∂x2
+ U(x)A2Ψ2

= A1ih̄
∂Ψ1

∂t
+A2ih̄

∂Ψ2

∂t

= ih̄
∂

∂t
(A1Ψ1 +A2Ψ2)

In other words, the S eq. is linear.3

§10.2 Interpretation

|Ψ(x)|2dx is interpreted as the probability that a

particle will be found between x and x+ dx.

Because of this we require that∫ ∞
−∞
|Ψ|2dx ≡

∫ ∞
−∞

Ψ∗Ψ dx = 1.

This forces Ψ→ 0 as |x| → ∞.

4

The S equation, it turns out, is not the probability

police: It allows solutions that are un-normalizable.

But it does police evolution: If you start normal

(ized), it ensures you stay so. In other “words”:

d

dt

∫ ∞
−∞

Ψ∗Ψdx =

∫ ∞
−∞

(
∂Ψ∗

∂t
Ψ + Ψ∗

∂Ψ

∂t

)
dx = 0

To see this, multiply the S eq. by Ψ∗/(ih̄):
5

Ψ∗
∂Ψ

∂t
=

ih̄

2m
Ψ∗

∂2Ψ

∂x2
− i

h̄
U(x) |Ψ|2

Its complex conjugate is

Ψ
∂Ψ∗

∂t
= − ih̄

2m
Ψ
∂2Ψ∗

∂x2
+
i

h̄
U(x) |Ψ|2

Adding the two,

Ψ∗
∂Ψ

∂t
+ Ψ

∂Ψ∗

∂t
=

ih̄

2m

(
Ψ∗

∂2Ψ

∂x2
−Ψ

∂2Ψ∗

∂x2

)
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The left-hand side is the quantity whose integral

over x we wish to show is zero.

The right hand side may be rewritten as

ih̄

2m

∂

∂x

(
Ψ∗

∂Ψ

∂x
−Ψ

∂Ψ∗

∂x

)
Integrating this over x from −∞ to ∞, we get

ih̄

2m

[
Ψ∗

∂Ψ

∂x
−Ψ

∂Ψ∗

∂x

]∞
−∞

= 0

7

§10.3 Separable Wavefunctions

For Ψ(x, t) = ψ(x)φ(t), the S eq. becomes

− h̄2

2m

d2ψ

dx2
φ(t) + U(x)ψ(x)φ(t) = φ(x)ih̄

dφ

dt

Dividing by ψ(x)φ(t), we get

− 1

ψ(x)

h̄2

2m

d2ψ

dx2
+ U(x) =

1

φ(t)
ih̄
dφ

dt
8

The two will be equal ∀x and ∀t iff each side is

a constant, E, with the dimensions of energy. So

we get a time-dependent equation,

ih̄
dφ

dt
= Eφ(t)

and a time-independent one

− h̄2

2m

d2ψ

dx2
+ U(x)ψ = Eψ(x)

9

(1) Solve the time-dependent equation.∫
dφ

φ(t)
=
E

ih̄

∫
dt

ln φ(t) =
E

ih̄
t+ C = −iωt+ C

where we’ve used E = h̄ω(= hf).

This becomes

φ(t) = (eC)e−iωt
10

We’ll drop the eC term because it will be absorbed

by the eventual normalization of Ψ(x, t).

So, φ(t) = e−iωt gives the time dependence of all

separable wavefunctions.

Unless otherwise stated, we’ll assume that all the

wavefunctions we consider are separable.

11

§10.4 A Free Particle (No Forces)

In the absence of forces, U(x) = 0.

§10.4.1 Classical behavior

The particle will obey Newton’s first law of motion:

it will stay at rest or continue in uniform motion.

12
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§10.4.2 Quantum mechanical behavior

We ask what the S eq. says.

Keep the following in mind, remembering these:

ω ≡ 2πf , k ≡ 2π/λ, and h̄ ≡ h/2π:

E = hf

= h̄ω

p =
h

λ
= h̄k

Further E = p2/2m for a particle of mass m.
13

The time-independent S eq. becomes:

d2ψ

dx2
= −k2ψ(x), k2 =

2mE

h̄2

The general solution is a linear combination of two

independent solutions, found by inspection,

ψ(x) = Asin kx+B cos kx

14

Another way: Observe that (ψ′2 + k2ψ2)′

= 2ψ′ψ′′ + 2k2ψ′ψ = 2ψ′(ψ′′ + k2ψ) = 0

So ψ′2 +k2ψ2 = C2
1 , or ψ′2 = k2

(
(C1/k)2−ψ2

)
.∫

ψ′√
(C1/k)2 − ψ2

dx =

∫
k dx

ψ = (C1/k) sin(kx+ C2)

=

[
C1

k
cosC2

]
sin kx+

[
C1

k
sinC2

]
cos kx

15

But, we have a problem: the function

ψ(x) = Asin kx+B cos kx

is not normalizable .

We get around this by constructing a wave packet

by superposing solutions of this type.

16

§10.5 A Particle in a Box

This is a particle confined to move in a fixed space,

say 0 6 x 6 L. We model this by

U(x) =

{
0 0 6 x 6 L

∞ elsewhere.

§10.5.1 Classical behavior

The particle with either sit at rest in the box, or

will bounce at uniform speed between the walls.17

§10.5.2 Quantum mechanical behavior

Inside the box, we have a free particle, so the time-

independent equation has the general solution

ψ(x) = Asin kx+B cos kx

Outside the box, the time–independent equation

− h̄2

2m

d2ψ

dx2
+ U(x)ψ = Eψ(x)

suggests that ψ → 0, as U(x)→∞.18
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So, we require that the interior wavefunction obey

ψ = 0 at the boundaries x = 0 and x = L:

ψ(0) = 0⇒ Asin 0 +B cos 0 = 0⇒ B = 0.

ψ(L) = 0⇒ Asin kL = 0⇒ kL = nπ,

where n = 0, 1, 2, . . .

For each allowed value of n, we get a solution of

the S eq., ψn(x) = An sin(nπx/L).
19

The wavefunctions, ψ0, ψ1, and ψ2, with the as-

sociated probability densities |ψn|2:

20

§10.5.3 Energy levels

Since kL = nπ, we get,

E =
k2h̄2

2m
=
n2π2h̄2

2mL2

In other words, we have quantized energy levels.

21

§10.6 A Particle in a Finite Square Well

This is a particle in a “potential well” of depth U :

U(x) =

{
0 0 6 x 6 L

U elsewhere.

22

§10.6.1 Classical behavior

This will depend on the total energy E.

If E 6 U , the particle will be confined to the well,

and will bounce between the walls.

If E > U , the particle will escape the well.

To explore the CM-QM differences, we’ll look at

E 6 U .
23

§10.6.2 Quantum mechanical behavior

In the well, we again have a free particle, so the

time-independent equation has the same general

solution

ψ(x) = Asin kx+B cos kx

We cannot assume here, though, that ψ(0) =

ψ(L) = 0. We need to first get the wavefunc-

tion outside the well.24

ADDITIONAL NOTES

4

4



PHY19 Week 10, Slides 25–30

This exterior wave function is obtained from

− h̄2

2m

d2ψ

dx2
+ U(x)ψ = Eψ(x)

which reduces to

d2ψ

dx2
=

2m(U − E)

h̄2 ψ(x) ≡ α2ψ(x)

25

There are two independent solutions, eαx and e−αx

of this equation.

The general solution is

ψ(x) = Ceαx +De−αx

Since we need ψ(x)→ 0 as x→ ±∞, we get

ψ(x) =

{
Ce+αx x < 0

De−αx x > L
26

The previous interior solution, must match these

“smoothly” at the boundaries: we must have

Asin 0 +B cos 0 = B = Ce0 = C

Asin kL+B cos kL = De−αL

No matter the details of this, there’s a nonzero

probably that the particle will escape even with

E < U .
27

The wavefunctions, ψ1, ψ2, and ψ3, with the as-

sociated probability densities |ψn|2:

28

§10.7 The Simple Harmonic Oscillator

The potential energy is

U =
1

2
Kx2

where K = mω2 and m is the mass of the particle.

29

§10.7.1 Classical behavior

The total energy is

E =
1

2
Kx2 +

1

2
mv2.

At the extreme position (x = A), v = 0; we get

E =
1

2
KA2

The particle oscillates between A and −A.
30
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§10.7.2 Quantum mechanical behavior

The time-ind. S eq. becomes

d2ψ

dx2
=

2m

h̄2

(
1

2
mω2x2 − E

)
ψ(x)

Not so easy to solve, but try

ψ(x) = C0e
−mωx2/2h̄

31

(2) What’s ψ′(x)?

ψ′(x) = ψ(x)

(
−mωx
h̄

)
(3) What’s ψ′′(x)?

ψ′′(x) = ψ(x)
(mωx

h̄

)2

− ψ(x)
(mω
h̄

)
Matches right side of the S eq., if E = 1

2 h̄ω.

We have the ground state wave function.
32

§10.7.3 Energy levels

En =

(
n+

1

2

)
h̄ω

The quantum oscillator can penetrate the classi-

cally forbidden region.

The smallness of the energy level gaps is why we

do not see them in day-to-day experience.

33

§10.8 Tunneling (Square Barrier Penetration)

This is (in some senses) the opposite of a particle

in a well of finite depth: a free particle encounters

a square potential of height U .

§10.8.1 Classical behavior

If E < U the particle bounces off the barrier.

If E > U the particle “steps over” the barrier,

with a reduction in speed.34

§10.8.2 Quantum mechanical behavior

Say barrier is located between x = 0 and x = L.

Assuming U = 0 outside the barrier, we get stan-

dard free particle solutions for x < 0 and x > L.

Choose an initial state Ψ(x, 0) = 0 for x > L.

We get from the S eq. on the left

Ψ(x, t) = Aei(kx−ωt) +Bei(−kx−ωt)

One wave moving right, another moving left.35

On the right

Ψ(x, t) = Fei(kx−ωt)

Within the barrier

Ψ(x, t) = Ce−αx−iωt +De+αx−iωt

where

α =

√
2m(U − E)

h̄36
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