Arvind Borde / PHY 19, Week 10:

§10.1 Schrodinger’s Equation

In 1d, the Seq. for ¥(z,t), the wave function for
a particle with potential energy, U(z), is
ov

Zha

The equation is dimensionally consistent: Every

term has dimension [E][V].

The Wavefunction (continued)

Knowing ¥(x,0), the wavefunction at some initial
instant of time, ¢t = 0, the S eq. allows us to figure
That s,
U(x,t) at any other time.

out its evolution. it allows us to find

Note 1: W is complex, in general.

Note 2:
then so is A1V + AyWs (A; constant).

If ¥; and ¥y are solutions of the Seq.,
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In other words, the S eq. is linear.

610.2 Interpretation
|U(z)|%dx is interpreted as the probability that a

particle will be found between x and = + dz.

Because of this we require that

/ |\I/]2dx5/ W dr = 1.

This forces ¥ — 0 as |z| — oo.

The S equation, it turns out, is not the probability

police: It allows solutions that are un-normalizable.

But it does police evolution: If you start normal

(ized), it ensures you stay so. In other "words”:

i \I’\I/d / (8\11\1' \II*aqj)d:Jc:O

dt ot ot

To see this, multiply the Seq. by U*/(ih):

ov  ih _ 0*T
>k_ — —\IJ - - 2
Ot 2m Oz hU( 7) ||

Its complex conjugate is

ov* 02w g

o ue v 2
ot 2m  Ox2 * hU(x) 7]
Adding the two,
ov ov* ih 0*U 0*U*
U*— + P = — (V'— - VU
ot ot 2m ( 022 o )
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The left-hand side is the quantity whose integral

over  we wish to show is zero.

The right hand side may be rewritten as
' v y*
ih 0 (\P*ﬁ 0 )

2mox \© dx

ox ox

Integrating this over x from —oo to oo, we get
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§10.3 Separable Wavefunctions

For W(x,t) = ¥(x)p(t), the S eq. becomes

h2 d2q

2m dz?

Dividing by ¥ (x)¢(t), we get

8(1) + U)o a)6(t) = o(a)in e

2 2

ih [ 00 0w L RAY Ly = e

o or o |__ Y(zx) 2m dz? o(t)  dt
The two will be equal Vx and Vt iff each side is (1) Solve the time-dependent equation.
a constant, E, with the dimensions of energy. So do B
we get a time-dependent equation, M ~ih /dt

do E ,
ih o E¢(t) In¢(t) iht +C twt +

and a time-independent one

where we've used F = hw(= hf).

This becomes

We'll drop the e“ term because it will be absorbed

by the eventual normalization of ¥(z,1).

So, ¢(t) = e~ ™! gives the time dependence of all

separable wavefunctions.

Unless otherwise stated, we'll assume that all the

wavefunctions we consider are separable.

610.4 A Free Particle (No Forces)

In the absence of forces, U(z) = 0.

§10.4.1 Classical behavior
The particle will obey Newton's first law of motion:

it will stay at rest or continue in uniform motion.
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§10.4.2 Quantum mechanical behavior

We ask what the Seq. says.

Keep the following in mind, remembering these:
w=2rf, k=2n/\ and h = h/27:

h

E =hf _n
P=X

= hw = hik

Further E = p?/2m for a particle of mass m.
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The time-independent S eq. becomes:

- 2mE

d2
_w = —kzlb(x), k2 - h2

dx?

The general solution is a linear combination of two

independent solutions, found by inspection,

Y(x) = Asinkx + Bcoskx

Another way: Observe that (12 + k%1)?)’
— 2w1¢// + 2k2¢/¢ — le(d}// + k2w) =0
So %+ k*y? = CF, or ¢"? = k*((C1/k)* —4?).

/ \/(Cl/?li/)Q — dr = /k:dx

w = (Cl/k’) sm(k:sc + CQ)

= {% cos C’z] sin kx + l% sin 021 cos kx

But, we have a problem: the function
Y(x) = Asinkx + Bcoskx

is not normalizable

We get around this by constructing a wave packet

by superposing solutions of this type.

§10.5 A Particle in a Box

This is a particle confined to move in a fixed space,

say 0 < x < L. We model this by
0 0<z<«<lL
ve) = {

oo elsewhere.

§10.5.1 Classical behavior

The particle with either sit at rest in the box, or

will bounce at uniform speed between the walls.

§10.5.2 Quantum mechanical behavior

Inside the box, we have a free particle, so the time-

independent equation has the general solution
Y(x) = Asinkx + Bcoskx
Outside the box, the time—independent equation
_R &y
2m dx?

+U(z)y = E(x)

suggests that ¢ — 0, as U(x) — oc.
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So, we require that the interior wavefunction obey
1) = 0 at the boundaries x =0 and = = L:

Y(0) =0= Asin0+ Bcos0=0= B =0.

Y(L)=0= AsinkL =0= kL =nm,

where n =10,1,2,...

For each allowed value of n, we get a solution of
the Seq., Y (z) = A, sin(nmz/L).
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The wavefunctions, 1, 11, and 1, with the as-

sociated probability densities |1/, |?:

§10.5.3 Energy levels
Since kL = nm, we get,

kR nPn?R?

FE —
2m 2mL2

In other words, we have quantized energy levels.

610.6 A Particle in a Finite Square Well

This is a particle in a “potential well” of depth U:

0 0<z<lL
U(m):{

U elsewhere.

§10.6.1 Classical behavior
This will depend on the total energy F.

If £ < U, the particle will be confined to the well,

and will bounce between the walls.
If £ > U, the particle will escape the well.

To explore the CM-QM differences, we'll look at
E <U.

§10.6.2 Quantum mechanical behavior

In the well, we again have a free particle, so the
time-independent equation has the same general

solution

Y(x) = Asinkx + Bcoskx

We cannot assume here, though, that ¢(0) =
(L) = 0. We need to first get the wavefunc-

tion outside the well.
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This exterior wave function is obtained from

which reduces to

d*y  2m(U — E)
dx2 o h2
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There are two independent solutions, e®* and e~ "

of this equation.

The general solution is
P(x) = Ce* + De™ "

Since we need ¥ (x) — 0 as © — Fo00, we get

{C’e“"” <0
De % x> L

P(x) =

The previous interior solution, must match these

“smoothly” at the boundaries: we must have

Asin0+ BcosO=B=Ce’ =C
AsinkL + BcoskL = De™ "
No matter the details of this, there's a nonzero

probably that the particle will escape even with
E<U.

The wavefunctions, 11, 19, and 3, with the as-
g

sociated probability densities |1,

§10.7 The Simple Harmonic Oscillator

The potential energy is

U = §K.T2

where K = mw? and m is the mass of the particle.

§10.7.1 Classical behavior
The total energy is

1

E = L w?

2Kx2 + §mv )

At the extreme position (z = A), v = 0; we get
1
E=_-KA?
2

The particle oscillates between A and —A.
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§10.7.2 Quantum mechanical behavior

The time-ind. S eq. becomes

d*>y  2m (1
pria <§mw2x2 - E) ()

Not so easy to solve, but try

w(x) — C«Oe—mww2/2h
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(2) What's ¢/(x)?

(3) What's 4" (z)?

v = o) (T2) ) (52

Matches right side of the Seq., if E = %hw.

We have the ground state wave function.

§10.7.3 Energy levels

1

The quantum oscillator can penetrate the classi-

cally forbidden region.

The smallness of the energy level gaps is why we

do not see them in day-to-day experience.

§10.8 Tunneling (Square Barrier Penetration)

This is (in some senses) the opposite of a particle
in a well of finite depth: a free particle encounters

a square potential of height U.

§10.8.1 Classical behavior
If E < U the particle bounces off the barrier.

If £ > U the particle “steps over" the barrier,

with a reduction in speed.

§10.8.2 Quantum mechanical behavior

Say barrier is located between z =0 and z = L.
Assuming U = 0 outside the barrier, we get stan-

dard free particle solutions for x < 0 and = > L.

Choose an initial state ¥(x,0) =0 for z > L.
We get from the Seq. on the left

\11(513775) _ Aez’(kx—wt) +Bei(—kx—wt)

One wave moving right, another moving left.

On the right
(z,t) = Fellke—wt)
Within the barrier
U(x,t) = Ce @77t 4 Detar—ivt

where
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