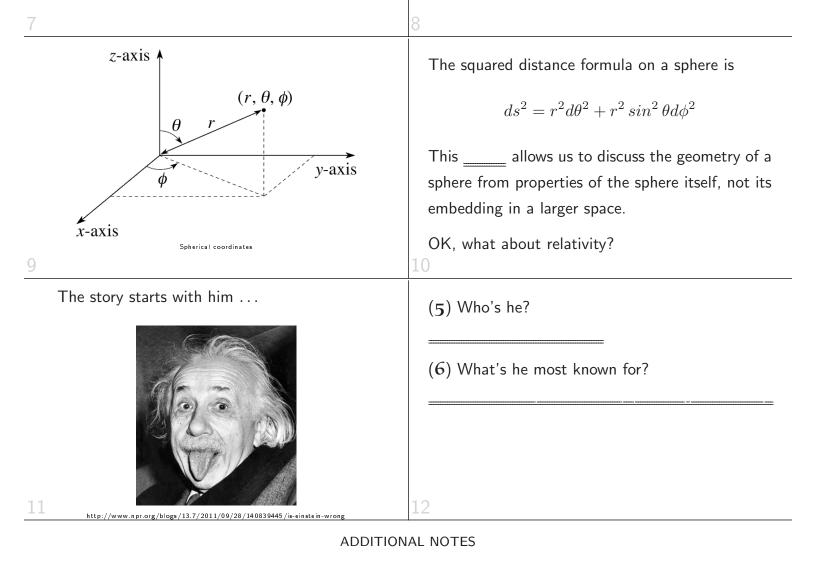
## Arvind Borde / MTH 675, Unit 1: Introduction and Background


| (1) What's differential geometry?                                                                                                                                                                                                                                                                                                           | <ul> <li>Brief, sketchy history of geometry</li> <li>First(0ld), "Pythagorean theorem":</li> </ul>                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (2) Why calculus in geometry?                                                                                                                                                                                                                                                                                                               | <ul> <li>~ 500-1800 BCE: Examples. Egypt/Mesopotamia, Plimpton Tablets.</li> <li>~ 800 BCE: Statement. India, Shubha Shastra, Baudhayan.</li> <li>~ 600 BCE: Proof. China, Zhou Bi Suan Jing.</li> <li>~ 500 BCE: Statement. Pythagoras.</li> <li>~ 300 BCE: Proof. Greece. Elements, Euclid.</li> </ul> |
| <ul> <li>Next (Newish): <ul> <li>1827: General Investigation of Curved Surfaces, Gauss. 2d surfaces in 3d space.</li> <li>1854: On the Hypotheses which lie at the bases of Geometry, Riemann.</li> <li>1887–1912: Ricci, Tensor Calculus.</li> <li>1913–1916: General Relativity</li> </ul> </li> <li>General what? Before that</li> </ul> | (3) What's the Pythagorean theorem?                                                                                                                                                                                                                                                                      |
| 3                                                                                                                                                                                                                                                                                                                                           | 4<br>(4) What's that in terms of the distance between the two points $(x_1, y_1)$ and $(x_2, y_2)$ ?                                                                                                                                                                                                     |

ADDITIONAL NOTES

We'll need the notation that "dx" means a (very small) difference in the variable x. The squared distance formula for flat space is then just the sum of squares of coordinate differences:

Every geometry, curved or flat, has a characteristic distance formula expressible via squares of the appropriate coordinate differences.

If you're discussing the geometry of a sphere you use a distance formula that defines *that* geometry. The standard coordinates here are basically latitude ( $\theta$ ) and longitude ( $\phi$ ).



## Unit 1, Slides 13-18

## MTH 675

| Summary of the Theory of Relativity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Theory developed between 1905 and 1916, primar-<br>ily by Albert Einstein.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.         3.                                                                                                                                                                                                                                                                                                                                                                                                |
| First version (1905), called Special Relativity. Ein-<br>stein worked for a decade on extending it, till he<br>succeeded in 1915 (published in 1916) with the<br>General Theory. General Relativity has four main<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                            |
| It's not all words:<br>Einstein's theory; expressed viagequations.)]<br>$G_{ab} \stackrel{=}{=} R_{ab}^{\left[q^{cd}} - \left(\frac{1}{2} g_{ab}^{c} R^{+} \stackrel{=}{=} \frac{8\pi G}{c^{4}} T_{ab}^{\partial} g_{bc}\right)\right]}{\downarrow^{-} \left[g^{cd} \left(\partial_{a} g_{ed} + \partial_{e} g_{ad} \stackrel{=}{\downarrow} \partial_{d} g_{ae}\right)\right]}$ Spacetime Geometry( $\partial_{c} g_{bd} + \partial_{e} g_{ad} \stackrel{=}{\downarrow} \partial_{d} g_{cb}$ )]<br>Ricci Curvature $g R_{ab} \partial_{a} g_{bd} \stackrel{=}{\downarrow} \operatorname{Energy-Momentum}_{b gab}$<br>Curvature Scalar $\left[\frac{R}{g^{d}} \left(\partial_{e} g_{cd} + \partial_{c} g_{ed} - \partial_{d} g_{ec}\right)\right]$<br>Metric, $g_{ab}$ | Einstein Test 3<br>Motion of the perihelion of a planet<br>The of a planetary orbit is<br><br>A planet (Mercury, e.g.) goes around the sun on<br>an elliptical path. But, the path does not close:<br>the perihelion is not at the same point every year.<br>16This is called                                                                                                                                |
| A precessing ellipse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Till Einstein, we could explain most of the precession of Mercury, except for a small amount:</li> <li>0.012° – every hundred years!</li> <li>Einstein's proposal was that the matter of the sun warps surrounding spacetime geometry. Mercury moves on a straight line on this curved background.</li> <li>Sounds weird, but you get exactly the extra 0.012°</li> <li>18that you need.</li> </ul> |
| ADDITIONAL NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |

3

## Slide 19

How do we describe the warped geometry of spacetime caused by a (roughly) spherical object such as the sun with mass m?

Through a spacetime metric:

$$ds^{2} = f(r)dt^{2} - \frac{1}{f(r)}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta \, d\phi^{2})$$

where

19

$$f(r) = 1 - \frac{2Gm/c^2}{r} = 1 - \frac{r_s}{r}.$$

ADDITIONAL NOTES